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Within the Monte Carlo formalism supplemented by the modified Newton-Raphson optimization technique,
we investigated structural and dynamical properties of two-dimensional binary clusters confined in an external
hard-wall potential. Two species of differently charged classical particles, interacting through the repulsive
Coulomb force are confined in the cluster. Subtle changes in the energy landscape and the stable cluster
configurations are investigated as a function of the total number of particles and the relative number of each of
the two particle species. The excitation spectrum and the normal modes corresponding to the ground-state
configuration of the system are discussed, and the lowest nonzero eigenfrequency as a measure of the stability
of the cluster is analyzed. The influence of the particle mass on the eigenfrequencies and eigenmodes are
studied, i.e., we study a binary system of particles with different charge and different mass. Several unique

features distinct from a monodisperse system are obtained.
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I. INTRODUCTION

In 1934, Wigner predicted [1] that electrons crystallize
and form a triangular lattice if the density of the electron gas
is lowered beyond a critical value. Over the last decades,
such Wigner-like ordering in various systems consisting of a
finite number of classical particles became a prominent study
object [2-5]. Most of the theoretical studies focused on clus-
ters in external parabolic confinement, similar to the action
of a uniform neutralizing background of charges. The case of
a fixed positive background charge was addressed in Refs.
[6,7]. In view of possible experimental realizations, the ex-
treme case of hard-wall confinement was considered [8].
Subsequently, an interesting re-entrant melting behavior was
observed for hard-wall confined colloidal particles dissolved
in water [9,10], which is absent in a parabolically confined
system. Obviously, the radial particle fluctuations can be
drastically affected by the lateral confinement, and were
found to be responsible for an enhanced locking of adjacent
particle rings in Ref. [11]. Reference [12] presented a sys-
tematic study of the ground state and normal modes of the
two-dimensional (2D) hard-wall clusters, where different in-
terparticle interactions (i.e., Coulomb, dipole, logarithmic,
and screened Coulomb) were considered.

Very recently, the scientific focus of both theoretical and
experimental studies of finite clusters shifted to two-species
systems, e.g., with two types of charged particles, that was
motivated by the increased complexity of the phase diagram
[13]. The structure and melting of heterogeneous clusters
made of singly and doubly charged species with the same
mass were studied in Refs. [14,15]. Nelissen et al. [16] stud-
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ied the ground state of a finite size system containing one or
two impurities with different charge and mass, which was
motivated by the experiment of Ref. [17]. Structure and
melting of a binary system were studied theoretically by Fer-
reira et al. [18,19], and experimentally in Refs. [20,21]. The
most recent work [22] extended the analysis from binary to
multispecies systems. A universal law was proposed, imply-
ing that the particles with similar mass-to-charge ratio tend
to populate a common shell, independently of the total par-
ticle and species numbers in the system. This result is con-
sistent with earlier predictions (see, e.g., Refs. [18,23].). In
particular, Ref. [23] indicated the effect of the identical
charge-to-mass ratio on the formation of bicomponent Cou-
lomb bicrystals.

All of the above studies considered binary clusters in a
parabolic confining potential. Therefore, in this work, we
performed a systemic study of the structure and linear dy-
namics of the 2D binary system in a hard-wall trap since
such study has never been done before. Our study is moti-
vated by the recent experiment of Ref. [24], and the Brown-
ian dynamics simulations of the melting properties of the
binary systems reported in Ref. [25]. Here we study in detail
the ground-state configurations, eigenfrequencies, and eigen-
modes of the cluster, not only for binary mixtures of particles
with different charge, but also of different mass.

The paper is organized as follows. In Sec. II, the model
and the numerical approach are described. Section III is de-
voted to the ground-state energy and configurations for clus-
ters with different number of particles. In Sec. IV, the eigen-
mode spectrum for these clusters is discussed, and the effect
of particle mass on the normal modes are presented. Our
conclusions are given in Sec. V.

II. NUMERICAL APPROACH

We study the properties of a binary two-dimensional (2D)
cluster confined in a hard-wall potential. The system consists
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of two different kinds of particles, i.e., Ny particles of fixed
charge Qe and fixed mass M/, and N, particles of variable
charge Q,e and variable mass M. The charge ratio between
these two kinds of particles is defined as C,=Q,/Q;>1, and
the corresponding mass ratio as M,=M,/My. To generalize
the problem, we take the interparticle interaction propor-

tional to 1/R". The Hamiltonian of such a 2D system is

given by
N 22 Ny n'
e R
H=3 VR + -2 e
=1 AmeR; > =1 R - R)|"
NU Vl, N }’l’
N 0y¢ R, Qva R,
4meRy S R - R|" " dmeR, o o R, —R|"
(1)
with the hard-wall confining potential taken as
0 for R<R,
V(R) = (2)
o for R=Ry,.

In the above formulas, N denotes the total number of par-
ticles (N =NU+Nf), e is the unit of charge, R, is the radius of
the circular hard-wall trap, € is the dielectric constant of the

surrounding medium, and IE,-:(xi,y,-) is the position of the ith

particle with R;=|R,|. Note from Eq. (1) that the total energy
of the studied system does not depend on the mass of the
particles in contrast to the case with parabolic confinement
potential [18].

We can obtain the Hamiltonian in a dimensionless form if
we choose R, as the unit of length, Ey= Q e?/4meR,, as the
unit of energy, and Qe as the unit of charge Equation (1)
then reads

Ny N,

v C
H= 2 ———+ 2 — —+2 22—,
=1 [F=F" k= [Re= A" metemt |7 = 7

A3)

with the hard-wall potential in the form

0 for r<li 4
Vir) = o for r=1. “

Regarding the interparticle interaction, in this paper we will
restrict ourselves to the Coulomb repulsion, i.e., n'=1 in
Egs. (1) and (3).

The ground-state configurations were obtained by mini-
mizing the energy [Eq. (3)] using the Monte Carlo simulation
technique, followed by a Newton optimization procedure
proposed by Schweigert and Peeters (for details, refer to Ref.
[26]). The eigenmode spectrum is then obtained from the
eigenvalues and eigenvectors of the dimensionless dynami-
cal matrix with elements

PH
Haﬂ,ij= /_— s (5)
Nm;m; d a; d B; aa?

where «, 8 denote one of the Cartesian coordinates (x,y) of
the given particle, a? gives the position of the ith particle in
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FIG. 1. (Color online) Average energy per particle E as a func-
tion of the total number of particles N, for clusters with N,=5 and
N,=6, and C,=2,4 and 8, respectively. In addition, the result for a
monodisperse system (N,=0) with singly charged particles is pre-
sented in comparison.

the ground-state configuration, and m; =M,/ M is the reduced
mass of each particle (i=1,2...N). Therefore m; equals M,
for particles with varied mass M, and 1 for particles with

fixed mass M. The eigenfrequencies in this paper will be
expressed in units of w’'=+\Ey/(M fRz)

III. STRUCTURE OF THE BINARY CLUSTER
IN THE GROUND STATE

In this section, we will consider the ground-state configu-
rations and the corresponding energy of the studied system.
In Fig. 1, we show the average energy per particle in the

ground state E", for clusters with different total number of
particles N. Each line in Fig. 1 corresponds to a system with
different values of N, and C,. For comparison, we also show
the result for a monodisperse system with singly charged
particles (line 1, N,=0 and C,=1). The other curves are for
different charge of N,=5 or 6 particles (i.e., different C,) and
we increased the number of low-charged particles. Here we
show an essentially important result—with increasing charge
of N, particles, as we add low-charged particles to the sys-
tem (i.e., increase the total number of particles N), the energy

E first decreases and then increases. This is depicted by
curves 4-7 in Fig. 1, which all decrease first and then rise,
while the lower three curves 1-3 obtained for C,=1 and C,
=2 monotonically increase. Therefore for each of the four
upper lines (4—7) we can obtain the optimal number of par-
ticles in the cluster N;, which provides the lowest average
energy per particle. We find that, for N,=5, N; equals 7 for
C,=4, while it increases to N;=19 for C,=8. Similarly, for
N,=6, N; increases from 10 to 24 for C,=4 and 8, respec-
tively.

Note that this trend of decrease and subsequent increase
of the average particle energy vs the number of particles

E(N) curve is unusual. For parabolic [8,27] and hard-wall

confinement [ 12], the energy always monotonically increases
with the particle number N, similarly to curves 1-3 in Fig. 1.

041404-2



TWO-DIMENSIONAL BINARY CLUSTERS IN A HARD— ...

25 100
20 EEstowion No Ciﬁ*”* 80 noes
° E"/EO(mghrh\gh) ““2’/" S 5
k' e
15 el 60 \ I AUIUTIOURISS S
o -
7
e
10 el " ;rf::A 40 L saakaadis
ey AM“AMA:_;.*' L olpagaest
5 = - 20 A S

@ e, (o) Trniiees
0 :"_,.‘-' o0 0s00s00000r0000 0 _“"“_,“,.,.,n"'

5 10 15 N 20 25 30 35 5 10 15,20 25 30 3
25 EE N=6;C=2 1% N =6; C =8

0(low-high) g v O
™
20 | —— EIE, 3o 100 | %,
(total) / / “. 7
Y DN
15 . ol 75 B
o
e 50 s
.
L ﬂ“ﬂu‘ﬁ;ﬁ;ﬂ‘ \N“““w
A o e -A-A-

o . 25 st La S SO
B0 s (@) s
0 H i Riae Seeesesee 0 :}.}..}. e

e

5 10 15 N 20 25 30 35 5 10 15 20 25 30 35

FIG. 2. (Color online) (a) The different energy contributions for
N,=5 and C,=2 clusters, as a function of the total number of par-
ticles N. The line with black squared dots gives the average inter-
action energy E’ between low-charged particles, the red dotted line
shows the average interaction energy E” between high-charged par-
ticles, the blue triangles correspond to the average interaction en-
ergy E" exclusively between low and high charged particles, and
the purple pentagons indicate the total energy per particle E. The
same notation is used in (b), (c), and (d) for different parameter
values.

In what follows, we clarify the unusual E(N) behavior of
binary clusters. The total energy E for binary systems con-
sists of three parts: averaged interaction energy E’ (low-low)
between low-charged particles, averaged interaction energy
E” (high-high) between particles with higher charge, and av-
eraged interaction energy E" (low-high) between the two
species. In Fig. 2, we show the dependence of all latter en-
ergies on the number of particles in the cluster [E(N), E'(N),
E"(N), E"(N)], for N,=5,6 and C,=2,8. As shown in Figs.
2(a)-2(d), E' (black squares) and E"” (blue triangles) increase
when N increases while E” (red dots) always decreases. Ob-
viously, the decrease of E”(N) is the source of the decreasing
average energy per particle in small clusters. Being the inter-
action energy between a fixed number of N, particles (in our
case 5 or 6), E”/N must decrease with increasing N. As three
aforementioned energies constitute the total energy E, the
decrease of E"(N) competes with the increase of E'(N) and
E"”(N) to determine the final tendency of E(N). Conse-
quently, when the charges of N, particles are much larger
than those of the other particles, the contribution of the in-
teraction energy between N, particles dominates. E.g. in line
6 of Fig. 1 [see Fig. 2(b)], when C, is large, E” is much larger
than £’ and E” for the total number N<15. As a result, the
averaged energy E decreases when N<<N;. For sufficiently
large N, the slowly decreasing E” is eventually overpowered
by the increasing tendency of E’ and E".

Next, we show the investigated ground-state configura-
tions for binary systems with fixed number of high-charged
particles N, while increasing the number of low-charged par-
ticles. Figure 3 shows characteristic lowest energy configu-
rations we obtained for clusters with N,=5 and 6, and C,
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FIG. 3. (Color online) Typical GS configurations for binary
clusters with N,=5 and 6, C,=2,4, and 8, respectively. The total
number N is marked on the left upper corner of each figure. The
clusters shown in each row have identical values of N, and C,.
Open circles denote the high-charged particles while the full dots
refer to the low-charged particles. The dotted circles and the corre-
sponding numbers in the fourth column indicate the shell structure
of the obtained clusters.

=2,4, and 8, shown in respective rows. One should note that
all the high-charged particles (open dots) in our system al-
ways reside at the rim of the cluster, which is analogous to
the case of binary systems confined in a parabolic trap [14].
At the same time, few added low-charged particles (full dots)
are located in between high-charged particles at the hard
wall. Dotted circles in some figures of Fig. 3 emphasize the
shell structures. Those are hardly surprising but still differ
from previous works [8,12] that studied typical shell struc-
tures for monodisperse systems. Namely, chosen parameters
N, and C, strongly affect the ground-state structure of the
cluster. By comparing configurations in the upper three rows
(N,=5) with those in the bottom three rows (N,=6), one
finds, e.g., that the inner shell presents a pentagonlike struc-
ture when N,=5 while it exhibits a hexagonlike structure
when N,=6. This feature is driven by the energy minimiza-
tion of the present Coulomb repulsions when the inner shell
of low-charged particles matches the structure of high-
charged particles in the outer shell. This brings us to the new
definition of so-called “magic” numbers: as in binary clusters
the inner shell tends in most of the cases to be occupied by
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TABLE I. Shell structures [denoted by (N;,N,,...)] of the ground-state configurations for a monodisperse
system (N,=0) and binary systems with N,=5,6 and C,=2.4, and 8, respectively.

N,=5 N,=6
N N,=0 C,=2 C,=4 C,=8 C,=2 C,=4 C,=8
6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 1.6
8 8 8 8 8 8 8 1,7
9 9 9 9 9 9 1.8 1.8
10 10 10 1.9 1.9 1.9 1.9 1.9
11 11 1,10 1,10 1,10 1,10 1,10 1,10
12 L1 L1 111 1,11 1,11 1,11 2,10
13 112 112 112 2,11 1,12 2,11 2,11
14 1,13 1,13 2,12 2,12 1,13 2,12 2,12
15 1,14 2,13 2,13 2,13 2,13 2,13 3,12
16 1,15 2,14 3,13 3,13 214 3,13 3,13
17 2,15 2,15 3,14 3,14 3,14 3,14 4,13
18 2,16 3,15 3,15 3,15 3,15 4,14 4,14
19 3,16 3,16 4,15 4,15 3,16 4,15 5.14
20 3,17 3,17 4,16 4,16 4,16 4,16 5.15
21 3,18 417 417 5.16 4,17 5.16 5.16
22 4,18 4,18 5.17 5.17 4,18 5.17 1,5.16
23 4,19 5.18 5.18 1,517 5.18 1,517 1,5.17
24 4,20 5,19 1,5.18 1,5.18 5.19 1,5.18 1,6,17
25 5.20 5.20 1,5.19 1,5.19 5.20 1,6,18 16,18
26 521 1,5.20 1,5.20 25,19 6.20 1,6,19 1,6,19
27 522 1,5.21 1,6,20 3,519 1,6.20 1,6.20 26,19
28 6,22 1,6.21 1,6.21 3,5.20 1,6.21 2,620 3,6,19
29 6,23 1,6,22 17,21 4,520 1,6,22 2,621 3,6,20
30 1,6,23 1,7,22 1,7,22 4521 1,7,22 3,621 4,6,20

N, low-charged particles. This is particularly important for
the first shell, as it has been shown previously for parabolic
confined classical clusters [8,27] (and confirmed also for su-
perconducting vortices in disks [28,29]) that the number of
particles in the innermost shell cannot exceed 5. For mono-
disperse clusters in a hard wall [12], the corresponding
threshold number equals 6. In our system this restriction
mostly depends on the values of N, and C,, which is evident
for C,>2.

As another structural difference from monodisperse clus-
ters, as shown in Fig. 3, our clusters with more high-charged
particles (especially for higher C,) have more inner low-
charged particles for fixed N, due to the increased repulsion
from the cluster edge where high-charged particles reside.
Note also that our binary systems have by far a more com-
plex structure than the monodisperse ones; the ground-state
configurations are rather complicated and are determined by
several competing interactions between different particle
species, within each species itself, and all together with the
confinement. In essence, parameters N, N,, and C, all to-
gether determine the concrete configuration of a given binary
system.

As explained above, for small N, particles first occupy the
edge positions at the hard wall due to the mutual Coulomb
repulsion. Added low-charged particles first fill up the outer
shell and then are gradually pressed into the interior of the
cluster where they form a new shell. In a similar case, for a
sufficient number of low-charged particles, they can be re-
distributed further inside into a third shell. Table I shows the
packing sequences of the ground-state configurations for N
=6-30 clusters with N,=5,6 and C,=2,4, and 8, respec-
tively. Each configuration is indicated by the number of par-
ticles in different shells, starting from the innermost one. In
Table I, we show directly the manner of shell-filling, when
each new shell appears, and how parameters N, and C, affect
the concrete formation of particular configurations.

Let us briefly discuss configurational properties of clus-
ters with five doubly charged particles (N,=5, C,=2). For
small NE{6-10}, all the particles are situated at the edge of
the wall. When a critical number of particles at the edge is
achieved (N=11), the inner shell is formed. For N&{l11
—25}, the system has a two-shell structure. When the number
of particles in the second shell reaches 5, a third shell is
created; this holds on for NE{26-30}. On the other hand,
for N,=5 and C,=4, the second shell appears after N=10.
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FIG. 4. (a) Radii of all the particles as a function of the total
number of particles N for the monodisperse system. (b) Similar to
(a), but for binary clusters with N,=5 and C,=2. Solid vertical lines
separate the clusters with different number of shells, while dotted
vertical lines show finer configurational transitions; numbers in the
brackets give the exact shell structure of the clusters between the
dotted lines, where N, is the number of particles situating at the
edge of the cluster.

The critical number of particles in the second shell is again
5, thus the third shell forms after N=24. For C,=8, the same
pattern continues, so we can conclude that new shells are
created at smaller N as C, is increased for fixed number of
high-charged particles.

A higher number of high-charged particles N, also influ-
ences the cluster structure. In the case of N,=6 and C,=2
systems, N=10 and N=27 are the critical points when the
new shells are created, and for C,=4, these drop to N=9 and
N=23 (and N=7 and N=22 for C,=8). Therefore, increasing
the number of high-charged particles N, has an additive ef-
fect to the one after increasing charge C,.

The parameter C, can also have an important impact on
the value of the critical number. As shown in Table I, the
critical number of the second shell is 5 for both cases of
N,=6 and C,=4 or 8. Compare this result with the case of
N,=6 and C,=2, the increased repulsive force may be the
key ingredient to hold back the formation of a hexagon. At
the same time, for the monodisperse system confined in a
hard wall, the critical number of the second shell is 6 [12].
Generally, we can conclude that for a binary system the criti-
cal number for the second shell cannot be more than 6 and
the actual value is determined by the values of N, and C,.
When the values of N, and C, are larger, the maximal num-
ber of particles in the second shell is smaller.

In Fig. 4(b), the radial distributions of all the particles are
plotted as a function of the total number N for clusters with
N,=5 and C,=2, next to those for the monodisperse system
shown in Fig. 4(a). According to the number of shells for
every cluster, we can divide the diagram into three parts. In
part 1, all particles are located at the edge of the wall and
form a perfect ring. Particles in every cluster of part 2 form
two shells, and the clusters in part 3 have three shells. In
areas 2 and 3, the dotted lines separate the clusters with a
different number of particles in each shell. For example,
(3,N,) of part 2 indicates that clusters in this area all have
two shells with three particles in the inner shell and the re-
maining N, particles in the outer shell. Between the dotted
lines, the radius of the inner shell is expected to decrease as
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FIG. 5. The off-center position of the central particle in a (1, N,)
cluster as a function of N, for different values of the parameters of
the binary cluster. Solid lines in figures (a), (b), (c), and (d) are
guides to the eye.

the number of particles in the outer shell increases [and con-
sequently the lateral compression on the inner particles in-
creases, see Fig. 4(a)].

However, the radial distribution of particles for binary
systems in Fig. 4(b) shows several distinct features. First of
all, we find that the first particle that leaves the outer shell is
not always located in the center of the cluster. Its displace-
ment from the central position follows from the nonuniform
distribution of high-charged particles on the cluster edge for
particular numbers of particles in the outer shell. The dis-
placement vs N is shown in Fig. 5 for different parameter
values, and can exceed 10% of the size of the hard-wall trap.
For the same reason, the inner shells in areas 2 and 3 of Fig.
4(b) no longer form a perfect ring, contrary to the case of
monodisperse systems. In conclusion, the mixing of two
kinds of particles in the cluster makes the spatial distribution
highly asymmetric. It basically appears impossible for the
binary clusters to achieve perfect-shell configurations, as par-
ticles distribute in deformed ring structures.

IV. PROPERTIES OF THE EIGENFREQUENCY
SPECTRUM AND NORMAL MODES

In this section, we investigate the specific spectral fea-
tures of binary clusters, i.e., the unique properties of their
excitation spectrum, normal modes, and eigenvectors for the
ground-state configurations. It is already known that there
exist 2N normal modes for a N-particle system. However, in
the hard-wall case, as the radial motion of particles at the
edge requires large energy, particles at the edge are practi-
cally radially immobilized at the wall, and can only move
along the perimeter [12]. Consequently, the number of rel-
evant modes for the hard-wall system reduces to 2N-N,,
with N, being the number of particles in the outer shell. In
what follows, our numerical simulations of these 2N-N,
modes will be compared to those for the monodisperse clus-
ters reported in Ref. [12].

We plot the full excitation spectrum of the normal modes
as a function of total number of particles N for binary clus-
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FIG. 6. (Color online) (a) Excitation spectrum of the monodispersive cluster as a function of the total number of particles; (b) same as
(a) for the binary cluster with N,=5 and C,=2. The center-of-mass- and breathing-mode-like, =0 and w,,,, modes are marked by triangles,
pentagons, circles, and squares, respectively. Figures (c) and (d) show the number of center-of-mass modes as a function of N, for the
monodisperse and binary cluster, respectively. Solid lines in figures (c) and (d) are guides to the eye.

ters with N,=5 and C,=2 in Fig. 6(b), next to the same for a
monodisperse cluster shown in Fig. 6(a). For Coulomb sys-
tems confined in a parabolic trap, three common normal
modes can be identified [26,30,31]: rotation as a whole (with
frequency w=0), the center-of-mass mode (CM, w= v2), and
the breathing mode (BM, w=6). These three common
modes have been found in the three-dimensional systems as
well [32]. In the hard-wall case, only w=0 eigenfrequency
remains common for all clusters regardless of N [as shown in
Figs. 6(a) and 6(b)]. However, the CM and BM modes still
exist, but now with a frequency that depends on N. In binary
systems, CM and BM modes also exist, which are similar to
the CM and BM modes of the monodisperse system (see Ref.
[12]). Due to asymmetry in the interparticle interactions in
the binary cluster, these modes show certain irregularities,
and are only CM-like and BM-like, as illustrated in vec),
vec6, veclO, vecll, and vecl3 vector plots in Fig. 7. Because
of the forbidden radial motion of particles in the outer shell,
only the inner particles can undertake CM-like or BM-like
oscillations (see Fig. 7). Therefore for N=6—14 in Fig. 6(b),
when the particles are all at the edge or only a single one is
in the center, there is no sense of discussing the CM-like or
BM-like modes for hard-wall confinement. Starting from N
=15, with more than one particle in the inner region of the
cluster, we can assign some eigenmodes to the CM or BM
modes for the particles in the central region. The frequencies
for =0, CM-like and BM-like modes are marked by differ-
ent symbols in Fig. 6. Figures 6(c) and 6(d) show the number
of identified CM modes as a function of N for the monodis-
perse and binary system. Note that four CM-like modes were

found up to N=20 in binary clusters [Fig. 6(d)], and this
number strongly differs as a function of N compared to Fig.
6(c). On average, we find a more pronounced quasidegen-
eracy of the CM-like modes compared to the monodisperse
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FIG. 7. Characteristic eigenvectors for a binary cluster with N
=27, N,=5, and C,=2.
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respectively.

clusters in hard-wall confinement. Note also that latter CM
modes are truly degenerate for clusters in radially symmetric
traps (parabolic [18,26] or hard wall [12]), while in our bi-
nary system they are each identifiable and have distinguish-
able frequencies.

Next, according to the structural division of Fig. 4(b), Fig.
6(b) can also be separated into corresponding areas. As ex-
plained above, the clusters in each region [between two ver-
tical lines in Fig. 4(b)] have the same inner shell structure.
As shown in Fig. 6(b), the corresponding eigenfrequencies in
each particular region exhibit a similar distribution, while
slightly rising in value with increasing N. However, at a
crossover to the next region, the highest eigenfrequency
[marked by squares in Fig. 6(b)] remains virtually un-
changed. Namely, at those values of N, an additional particle
in the cluster is added to the interior of the cluster and the
outer shell remains unchanged. As the highest frequency cor-
responds to the dynamics of the outer shell, it remains the
same for clusters with N and N+1 particles. For example,
when N increases, the ascending trend of w,,, is evident up
to N=11, where the value of w,,,, remains nearly the same,
i.e., Wy, Oof the N=11 cluster is almost equal to the one of
the N=10 cluster. In Fig. 6(b), such a feature is found as well
in clusters with N=15,18,21,23,26, etc., and each corre-
sponds to structural transitions from Fig. 4(b). In Fig. 7, the
higher energy excitations for the case of N=27 (N,=5,C,
=2) are plotted from vecl16 to vec33. For these vector plots,
especially the vec33 of w,,,, outer shell particles move in
pairs and oscillate toward each other, while particles on inner
shells oscillate with far lower amplitude. Hence w,,,, excita-
tion is mostly determined by the oscillation of particles at the
edge, and the corresponding eigenfrequency remains ap-
proximately the same for an unchanged number of particles
in the outer shell N,. At the same time, for the lower energy
excitations shown in Fig. 7, the inner particles oscillate
strongly while the outer ones are frozen.

Among all of the eigenfrequencies, the lowest nonzero
eigenfrequency (LNF) has stirred special interest in the sci-
entific community as it presents a measure for the stability of
the ground state. Figures 8(a)-8(c) present the LNF for N
=6-32, N,=5, and C,=2,3, and 4, respectively. In Fig. 8(a)
we show a clear ladder shape of the LNF(N) curve. To em-
phasize the hierarchy of structures along LNF(N) curves in
Fig. 8, we indicate structural transitions by vertical lines. We
divide each diagram into five parts with distinct behavior of
LNF. For clusters within part 1 marked as (N,), all particles
are on a single ring at the edge. In part 2 of (1,N,), only one
low-charged particle sits in the central region. The two-shell
clusters with more than one particle in the inner shell consti-
tute parts 3 and 4, with the latter having N, (five) low-
charged particles in the inner shell. In part 5 of each diagram
in Fig. 8, three shells are formed in each cluster.

For reasons already explained earlier, the LNF is found to
be largest in region 1, as particles in the outer shell are
hardly subjected to any dynamics. The LNF in region 2 de-
creases, as the oscillations in the outer shell are stimulated by
shorter range interaction with the central particle. The de-
scending trend of LNF continues in region 3. For single-shell
clusters, the LNF mode corresponds to the two halves of the
a ring moving in opposite directions [such as the case in Fig.
8(d)], whereas for double-shell clusters the LNF mode
mostly involves oscillations of the inner shell [Figs.
8(e)-8(i)]. It is easier to excite one inner particle of the
double-shell clusters in regions 2 and 3 than to excite the
outer particles in region 1. Thus it is easily conceived that the
single-shell clusters are more stable than the double-shell
clusters. This also explains the difference of LNF between
the regions 2 and 3 as more particles in the central ring are
easily excited compared to the single particle case. As shown
in Figs. 8(e), the LNF mode for clusters in region 2 still has
the two halves of the outer shell moving in opposite direc-
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tions. In region 3, the LNF mode corresponds to the rotation
of the inner particles, as shown in Figs. 8(f) and 8(g).

Following this tendency, one expects the LNF to decrease
further for double-shell clusters with more inner particles.
However, we find that LNF increases in region 4 for five
inner particles. This is clearly related to the “matching” of
the inner shell to the configuration of the N, high-charged
particles in the outmost shell. Namely, five low-charged par-
ticles form a pentagon inside the cluster, rotated with /5
angle with respect to the pentagon formed by five high-
charged particles sitting at the edge. Because of this com-
mensurability effect, this configuration is difficult to excite.
This and similar structures we classified as matching con-
figurations.

With further enlargement of clusters, new shells are cre-
ated. In region 5 of Figs. 8(a)-8(c) we show LNF for triple-
shell clusters. The variation of LNF with increased N in this
area is somewhat similar to regions 2—4. First, only one par-
ticle sits in the center which resembles the cases in region 2.
When more particles are pushed in the center, the formation
of the inner shells mimics the ones from regions 3 and 4.
These facts only emphasize the effect of the center-shell con-
figuration on the lowest nonzero excitation. However, it
should be noted that LNF seems to decrease as N is further
increased in region 5. Namely, the individual interparticle
interaction is gradually replaced by the effective interactions
between the shells as a whole, which results in the stimulated
intershell rotation, weakens the stability, and decreases the
LNF.

Let us now discuss the distinct, lowest LNF points found
in some structural regions, marked by red circles and corre-
sponding configurations in Fig. 8. A common feature for all
clusters of these peculiar points is that the high-charged par-
ticles and the low-charged particles are alternately placed at
the edge while remaining low-charged particles form a radi-
ally symmetric inner shell in the center. The inner shell of
low-charged particles experiences a symmetric potential,
which can easily excite collective motions of inner particles,
especially rotation. Intuitively, it is much easier to excite
collective motions of regular clusters than asymmetrical mo-
tions of nonuniform clusters. Consequently, uniform struc-
tures have lower LNF. We should emphasize that these uni-
form configurations are distinct from the previously
discussed matching configurations. The uniform configura-
tions require a uniform distribution of high-charged and low-
charged particles at the edge, while the matching configura-
tions stress the same symmetry of the low-charged particles
in the inner shell and the high-charged particles in the outer
shell. In the present case, for clusters at the red circled points
in Fig. 8, the corresponding configurations are uniform but
not matching, and they are easier for excitation than match-
ing structures. If the cluster is both uniform and matching,
such as the one for N=26 (N,=5, C,=2) shown in Fig. 3, the
corresponding LNF is high [see Fig. 8(a)]. Therefore match-
ing is more deterministic for the stability of the cluster than
the uniform structure.

In Ref. [12], LNF vectors of the small and large monodis-
perse Coulomb clusters confined in a hard-wall trap were
studied. It was found that once there is more than one par-
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ticle at the center, the LNF mode always corresponds (even
for large systems) to the rotation of all central particles as a
whole in the direction opposite to the one for the particles at
the edge, so-called intershell rotation. In our case of multi-
shell binary clusters, the LNF modes are richer than for
monodisperse systems. As shown in Figs. 8(g)-8(i), the
eigenvectors of the LNF for some binary systems with N,
=5 and C,=4 correspond to intershell rotation, and others to
vortexlike rotation, or several rotations in different parts of
the cluster. Contrary to the simple LNF mode for monodis-
perse systems [12], the diversified LNF eigenvectors of bi-
nary systems are induced by the spatially inhomogeneous
forces of the outer shell acting on the inner particles.

All above studied binary clusters consisted of particles
with different charge but equal mass. In what follows, we
briefly discuss the properties of the binary systems with two
kinds of particles—with different mass and different charge.
One should note that changing the mass of particles has no
influence on the total energy and ground-state configurations
of the system, as mass does not influence the interparticle
interactions or the hard-wall confinement. Therefore we re-
strict the present discussion to the effect of particle mass on
the LNF modes. In Figs. 9(a)-9(d), we show the LNF for
N=6-32 with N,=4-7 and C,=2. The reduced mass of low-
charged particles my=M;/My=1 and the reduced mass of
high-charged particles is taken as m,=M,/M,=1,2,4,0.2,
and 0.5, respectively. When m =m,=1 (black squares) in
Fig. 9(b), we are in the same case as in Fig. 8(a). As Fig. 9
shows, when m, > 1, the corresponding two curves (red dots
and blue triangles) lie below the m,=1 curve when N<15.
Analogously, the other two curves with m, <1 show higher
LNF than the m,=1 curve for N<15. Therefore we conclude
that decreasing the mass of some particles can increase the
LNF and increasing the mass leads to the opposite effect.
This partially follows from the fact that dynamical matrix
elements are inversely proportional to the square root of the
particle mass [see Eq. (5)]. One should note that curves in
Fig. 9 overlap for N larger than a certain threshold number
N,=14-16. In the way we performed the simulation, we
fixed the number of high-charged particles with mass m, and
increased the number of low-charged particles with mass
my=1. All particles of varied mass sit on the outer shell due
to their higher charge, and for N=N,, they do not participate
in the LNF dynamic mode, which makes the effect of vary-
ing m,, in Eq. (5) negligible. Obviously, N, can be shifted to
higher values if the mass of a certain number of low-charged
particles was changed as well.

V. CONCLUSION

The structural and spectral properties of classical, two-
dimensional binary clusters of differently charged particles in
a hard-wall potential were investigated through modified
Monte Carlo simulations. It was shown that the ground-state
structure for a binary system mostly depends on the param-
eters: total number of particles N, number of high-charged
particles N,, and their charge C, compared to the charge of
the remaining particles. The shell structure in our case is
much more pronounced in comparison with the parabolic
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FIG. 9. (Color online) LNF as a function of the number of particles N for clusters with N,=4-7, C,=2, my=1, and varying mass m,
=1,2,4,0.2,0.5, respectively. The insets show typical particle configurations for some values of N.

case, and the high-charged particles always stay at the edge
of the cluster, with low-charged particles distributed in be-
tween. The average energy per particle in the cluster was
found to first decrease as a function of total number N and
increase for higher N, which is very different from the mono-

tonic increase of E(N) found in monodisperse systems. Dif-
ferent values of N, and C, result in minimal interparticle
interactions found for different numbers of particles in the
cluster. As for structural novelties, we found that the critical
number of particles in the inner shell for binary systems can
be controlled by the values of N, and C,, which was not the
case in the monodisperse system. When C, is taken large
enough, the highest number of particles in the second shell
cannot exceed the number of high-charged particles (N,,) be-
fore the third shell forms. This is completely different from
monodisperse clusters in which the corresponding threshold
number equals 6.

The shell structures and observed structural properties
have direct implications on the spectrum. Especially the lad-
der shape of maximal eigenfrequencies diagram wp,,(N)
shows the influence of cluster structure on the corresponding
normal modes. Characteristic normal mode vectorplots were
studied and discussed. The w=0 rotation-as-a-whole mode is
found, together with a higher variety of BM- and CM-like
modes compared to the monodisperse system. The latter are
no more degenerate, and each have particular features, eigen-
frequency and energy, caused by the asymmetric competing
interactions in the system. As for the lowest nonzero fre-

quency (LNF) mode, for monodisperse clusters it always
corresponds to the intershell rotation. In the present case, for
binary systems, because of the inhomogeneous spatial poten-
tial created by the two kinds of particles, the cluster can be
excited in many different modes prior to intershell rotation.
The LNF normal modes are determined by the ground-state
configurations and demonstrate the essential influence of the
inhomogeneous lateral confinement imposed by the outer
shell on the inner particles in the cluster. On the one hand,
the so-called matching structures, where the structure of the
inner shell matches that of high-charged particles in the out-
most shell, are stable and hard to be excited and on the other
hand, the spatially homogeneous structures are less stable
and easy to be excited. The latter can be reached for configu-
rations with high-charged particles in the outer shell sepa-
rated by equal numbers of low-charged particles, which we
name uniform configurations. Those configurations exhibit
the lowest LNFs. Finally, the effects of particle mass on the
normal modes of binary systems are studied. As a general
rule, we found that decreasing the mass of some particles
leads to higher LNFs and vice versa.
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